Nondestructive Strength and Toughness Testing Applied to Additive Manufacturing

S. C. Bellemare, PhD, PE

Massachusetts Materials Technologies LLC

Metals that are relied on for strength and toughness

Material verification and quality control / quality assurance is in need of nondestructive methods for strength and toughness evaluation.

Current Strength Testing

Destructive Cut-Outs (samples removed)

Nondestructive Hardness Tests (Limited accuracy)

MMT's Portable Instruments

Nondestructive & Accurate

Laboratory-level accuracy at reduced time and cost

Two New Instruments for Nondestructive Evaluation

<u>In-Field NDE Testing</u>: **Hardness, Strength and Ductility (HSD)** (via frictional sliding)

Laboratory NDE Testing: Non-Destructive Toughness Testing (NDTT) (via micromachining)

Massachusetts Materials Technologies LLC (MMT)

Major Sponsor: National Science Foundation (NSF) Small Business Innovative Research (SBIR) Grants: Phases I

and II (Grants for **\$1,050,000** through March 2019)

Other Nondestructive Applications

Energy • Defense • Aerospace • Infrastructure

Where materials and welding processes are relied upon for their strength and toughness.

HSD: Innovative Breakthrough

- Bellemare, PhD thesis, MIT, 2006
- Three peer-reviewed journal articles (2008-2010):
 - Acta Materialia,
 - International Journal of Solids and Structures,
 - Mechanics of Materials.

Steel – HSD versus Laboratory Testing

	Туре	Tensile Test 0.5% YS [ksi]			HS	D Predict	ion	Range of	Average
Sample					0.5% YS [ksi]			Differenc	Difference
		Min.	Max.	Avg.	Test 1	Test 2	Avg.	e	
08T2	Midwall	34.4	40.3	37.0	38.3	35.8	37.0	0.0%	0.0%
F004	Flat	43.3	43.5	43.4	40.1	41.9	41.0	-5.3%	-5.6%
24T2	Midwall	43.4	44.5	44.0	45.8	46.7	46.2	3.9%	5.2%
12SLF	Midwall	43.3	47.7	45.5	46.0	45.9	46.0	0.0%	1.0%
14GRB	Midwall	42.8	51.7	47.3	50.7	48.0	49.4	0.0%	4.4%
12Y64	Midwall	49.4	50.5	50.3	51.8	50.3	51.1	1.1%	1.6%
18GRB-B	Midwall	50.6	53.7	52.2	51.5	52.0	51.8	0.0%	-0.8%
F001	Flat	53.5	54.0	53.8	53.8	55.5	54.6	1.1%	1.6%
16X42	Midwall	54.1	58.0	55.7	58.0	57.0	57.5	0.0%	3.2%
F015	Flat	56.1	56.9	56.5	59.8	58.5	59.1	3.9%	4.6%
10SHF	Midwall	64.1	66.0	65.0	60.8	63.0	61.9	-3.4%	-4.8%
16GRB	Midwall	69.8	70.2	70.0	72.1	69.9	71.0	1.1%	1.4%
F005	Flat	70.6	72.7	71.7	68.9	71.3	70.1	-0.7%	-2.2%
T3011	Midwall	72.5	73.0	72.7	69.6	70.0	69.8	-3.7%	-4.0%
F028A	Flat	53.8	55.8	54.8	52.1	52.8	52.5	-2.4%	-4.2%
F041	Flat	64.9	65.8	65.4	67.3	67.8	67.6	2.7%	3.4%
F030A	Flat	65.7	68.4	67.5	70.5	64.7	67.6	0.0%	0.1%

Long. Seam Determination with HSD Tester

Aluminum 6061 Cold Sprayed

Aluminum 6061 Cold Sprayed (HSD blind test results)

Sample	Yield Strength EUL @ 0.5% [ksi]			Ultimate Tensile Strength [ksi]			Work Hardening Exponent				
	Test 1	Test 2	Average	Test 1	Test 2	Average	Test 1	Test 2	Average		
	V1	36.8	36.0	36.4	38.9	42.5	40.7	0.043	0.087	0.065	Unprocessed
	V3	29.3	30.0	29.7	39.6	41.0	40.3	0.130	0.134	0.132	Processed
	W1	32.9	36.6	34.7	50.8	50.1	50.5	0.170	0.135	0.153	
	W2	33.0	31.4	32.2	45.0	41.5	43.2	0.134	0.124	0.129	
	M1	36.6	37.4	37.0	43.7	44.3	44.0	0.091	0.088	0.090	
	M2	37.4	38.7	38.1	37.4	46.5	42.0	0.128	0.092	0.110	Unprocessed
	M3	43.8		43.8	43.9		43.9	0.001		0.001	
	M4	36.5		36.5	46.7		46.7	0.236		0.236	Processed

V3 (UTRC) expected SY 33.8 ksi & UTS 40.5 ksi

Upcoming: Fracture Toughness via MMT's NDTT

How it works:

FTT Wedge Stylus

Machines off a thin (2-3) mil layer

Wedge creates fracture region

Fracture region

From fracture mechanics, toughness is proportional to the crack tip opening

12

Aluminum 6061 Cold Sprayed

Sample	Max. Ligament Height [um]							
Jampie	Test 1	Test 2	Test 3	Avg.				
V1	18.7	18.8	14.9	17.5				
V3	23.8	37.7	34.2	31.9				
			% Difference (V1/V3)	-45.2%				

Validation of MMT's NDTT

<u>Steps Forward</u>

- Potential user discussion / feedback
- 2. Proof of concept studies
- 3. Generate tool / procedure for specific applications
- 4. Enhance / make NDE effective for material properties determing performance

Nondestructive Metal Strength and Toughness Testing Solutions

Simon Bellemare, CEO s.bellemare@bymmt.com 617.868.0395

Jayne Shelton, General Manager j.shelton@bymmt.com 206.790.4287

MMT LLC | 810 Memorial Dr | Suite 100 | Cambridge, MA | 02139 | www.bymmt.com