AM for Defense & Gov’t.: Additive Manufacturing and Integration of Electronics for Military Systems
• Additive manufacturing technologies bring the promise of enhanced performance with the flexibility of historical additive processes like casting and welding

• In order to print parts, 3-D model data and machine manufacturing instructions are required (CAD + CAM)

• Pedigree of part is conditional upon certified materials, models and manufacturing data; Producibility, Quality, Reliability, Maintainability paramount for acceptance and utilization for DoD applications.

• An RDECOM Community of Practice, working with OGAs, industry and academia, has been established to perform the following inherently governmental functions:
 – Focus on Army-centric materials (warheads, ammunition, payloads, aviation)
 – Digital issues (software interface, 3D model storage, etc.)
 – Design for AM to reduce natural frequency vibration, lightweight designs, etc.
S&T in RDECOM

Discovery

Innovation

Advanced Development

Engineering & Production

Support to Warfighter

Translational Neuroscience

MEMS TBI Sensor

MRAP Armor

Face-Gear Technology for Block III Apache

XM25 Counter Defilade Target Engagement System

DISTRIBUTION STATEMENT A. Distribution Unlimited
There are opportunities for AM & PE to impact all Army systems.

- UAVs, UGVs
- Individual Soldier Protection
- Repair Parts
- Rapid Fielding
- Tooling
- Replacement Parts
- Advanced Prototypes
- Novel Designs
- Novel materials
- Logistics
- Vehicles & Sub-Systems
- Missiles/Munitions: Warheads, Fuzes
- Communications Command & Controls
- Weapons Components

UNCLASSIFIED
Opportunity Space

DISTRIBUTION STATEMENT A. Distribution Unlimited

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.
Vision: Innovative Armaments Solutions for Today and Tomorrow

Mission: To develop and maintain a customer focused, world-class workforce that will execute, manage and continuously improve integrated life cycle engineering processes required for the research, development, production, field support and demilitarization of munitions, weapons, fire control and associated items.

Advanced Weapons – line of sight/beyond line of sight fire, non line of sight fire, scalable effects, non-lethal, directed energy, autonomous weapons

Ammunition – small, medium, large caliber, propellants, explosives, pyrotechnics, warheads, insensitive munitions, logistics, packaging; fuzes, environmental technologies and explosive ordnance disposal

Fire Control – battlefield digitization, embedded system software, aero ballistics and telemetry

ARDEC Provides the Technology for Over 90% of the Army’s Lethality and Provides Significant Support to other Services’ Lethality
To advance and utilize printed electronics and additive manufacturing technologies to provide our War Fighter with state of the art armament solutions.

Develop and integrate state-of-the-art materials printing technologies to enhance capabilities for current and future munitions & weapon systems. Build expertise and knowledge base for the design, fabrication, testing, & integration of Printed Technologies for Armaments and Munitions to increase force effectiveness and reduce operations and support costs.
Military Considerations

- DOD heavily investigating the utilization of Printed Electronics in weapon systems.
- Transportation, storage, and operational environments must be considered.
- DOD represents unique environment for printed electronics utilization.
 - High G loads
 - Extreme Temperature and Humidity ranges
 - High shock and vibration loads
 - Extended Periods of dormancy (+20 Years)
- Limited data for failure mechanisms, failure rates, reliability, survivability.
- Need for high reliability devices in DOD applications.
AM In the Field Road Map (Notional)

Material and Technology Certification and Qualification

AM Used at RDECOM

AM Used at CONUS Depots

Part Optimization

AM Used at Depots in Theatre

AM Parts Library in use

AM MOS’s Start trg

AM Used in FOBs via Mobile Units

2000 - 2014 - 2025 - 2035

DISTRIBUTION STATEMENT A. Distribution Unlimited
• Traditional Part Duplicator

AND

• Part Optimization
 – Lighter with same or better strength
Integrated Printed Electronics for Munitions Capabilities

- **Ink Jet**
 - Dimatix, Epson, PixDro

- **Aerosol Jet**
 - Optomec

- **Micropen / Direct Write / DipPen**
 - Sonoplot, EFD, M3P, NanoInk, Controlled Syringe

- **MicroPump**
 - nScrypt

- **Screening & Stenciling**

- **Etching & Routing**

- **Transfer & Plating**

- **Multi-tool SuperScrypt**

- **Multi-Axis Module Manufacturing Platform (M3P)**

- **Numerous 3D Capabilities**
ARDEC 3D Printing Capabilities

- **Material Printers / 3D Printers**
 - Plastics (PLA, ABS, other)
 - Inks
 - Powder-Binder
 - FDM
 - LOM (Laminates)
 - Direct Laser Sintering (Metals & Plastics)
 - Several Custom & Multi-material systems

- **3D Scanners**
 - Photo, Digital, Laser, etc.

- **3D CAD / Modeling**
 - NetFab
 - MasterCam
 - Pro-E
 - Maya
 - Solid Works
 - Sketch-Up
 - Adobe Design Suite
 - 3D Studio Max
 - Z-Edit
 - Others

DISTRIBUTION STATEMENT A. Distribution Unlimited
The M₃ Platform is a part of the concepts being developed at ARDEC looking at new and innovative production methods to better meet future Army needs. By combining multiple manufacturing techniques with direct write and additive manufacturing capabilities, ARDEC’s goal is to have flexible and low cost capabilities for prototyping and production. Just-in-Time Manufacturing and Fab-in-the-Field concepts are being explored.
SuperScrypt

Dubbed the SuperScrypt, this multi-technology printing system is the only one of its kind. The system is based on nScrypt processing controls and software, which are fully open for manipulation (variation of processing parameters). This system includes:

- Line Scanning
- Thermoplastic Extrusion (up to 400°)
- Thermoset Deposition
- Ink Deposition
- 6-Axis Motion Control
- Tool Switching
- Pick-n-Place

To be added in FY15:
- Micro-milling
- Laser Sintering
- Aerosol Jet Deposition
- Drop-on-Demand
- Micro Cold Spray Deposition

With Scan-to-print capability, the SuperScrypt can deposit on complex curves, or build 3D shapes from scan data. Inverse kinematics enabled 6-axis motion control allows for true 3D printing instead of stacking 2D layers. Robust hardware allows for +/- 200nm precision.
Key Areas of R&D

- Nanomaterials Development
- Manufacturing Techniques
- Ink Development
- Materials Printing Techniques
- Testing and Evaluation
 - Qualification
 - Reliability
 - Long-term Survivability
- Flexible Electronics
- Power Generation/Energy Harvesting
- Thin Film Batteries
- Active Sensor Systems
- Device Miniaturization
- Homeland Defense / Homeland Security
- Fuzing
- Sensor Integration
- Antenna
- Remote Weapon Systems

Distribution Statement A: Approved for Public Release; distribution unlimited
Process Development Efforts

- Materials Development (Inks, Powders, Binders, etc.)
- Ink Formulations
- Recycling / material Re-use
- Additive Manufacturing Techniques
- Integration of 2D & 3D Printing
- Integration into Munitions
- Equipment modification / Development (i.e. multi-head /material capabilities)
- Deposition Techniques
- Testing and Evaluation
 - Qualification
 - High –G survivability
 - Reliability
 - Long-term Survivability
- Interconnects / Solderability
PROBLEM:
• Army is not realizing benefits of material printing & printed electronics as new enabling technologies to reduce size, weight, and cost for munitions
• Desire to add more capabilities into existing Fuze systems
• Need for more antennas and electronics into already “full” Fuze bodies.

SOLUTION/CONCEPT:
• Enabling PEEPS for Munitions
• Integrated flexible electronics with munition components
• Printed electronics with “novel” materials for High-G applications
• Printed components embedded into windcreens/radomes
• Conformal & direct write antennas & sensors onto curvilinear surfaces
• Printed Chaff

BENEFIT / SAVINGS
• Increased survivability and operations in denied environments
• Decreased size and weight,
• Lower power requirements
• Greater range and sensitivity
PROBLEM:
• Unreliable interconnects and bonding on flexible substrates and fabrics
• Robust solutions needed to connect COTS components and connectors
• Best-practices, fabrication methods and test procedures needed

SOLUTION/CONCEPT:
• Partnering with OGAs and strategic partners
• Embroided wires, and novel interconnects
• Developing new interconnect systems for flex & fabrics
• Developing new materials with improved properties

BENEFIT / SAVINGS
• Game changing electronics integration
• Increased reliability & survivability of flexible electronics and smart textiles
• Increased producibility and manufacturing readiness
PROBLEM:
• Need for integrated systems and sub-systems
• Numerous materials and techniques in Additive Manufacturing that require systems to be integrated and embedded
• Materials & process mis-matching causes failures and inconsistencies
• New fabrication methodologies and procedures need to be developed

SOLUTION/CONCEPT:
• Partnering with OGAs and strategic partners
• Embroided wires, and novel interconnects
• Developing new interconnect systems for flex & fabrics
• Developing new materials with improved properties

BENEFIT / SAVINGS
• Reduced size & weight
• Reliable integration of 2D & 3D Printing
• Embedded capabilities for enhancements to current & future weapon systems
• Increased reliability & survivability of electronics and sub-components
• More robust systems for High-G, extreme temperature, and multi-mode capabilities
PROBLEM:
• Lack of low cost fabrication methods for advanced munitions concepts
• Geometric and functional challenges in current munitions designs and fabrication
• Electronic initiation system for grenades & other munitions
• Desire to add more capabilities into systems
• Need for more antennas and electronics into already “full” Fuze bodies.

SOLUTION/CONCEPT:
• Develop new writeable explosives and technologies
• Advance the state-of-the-art in Energetics processing
• Novel detonation physics concepts
• Move towards fully printed munitions and weapon systems

BENEFIT / SAVINGS
• Multiple Warhead responses
• Mission tailorable systems
• Significantly reduces distribution & logistics
• Rapid development and prototyping of solutions for current and emerging threats
PROBLEM:
- Existing Multiple Integrated Laser Engagement System (MILES) training system is heavy and cumbersome 6-8 Lbs.
- No integration of soldier system(s) to weapon systems.
- Large heavy battery packs
- Soldiers often “hide” or “block” sensors during training

SOLUTION/CONCEPT:
- “Patch” with integrated printed/flexible rechargeable power, detectors, sensors, antenna, etc.
- HERO Safe RF Tags for tracking and monitoring
- Soldier worn and vehicle/weapon system compatible patch/tags for integrated training and simulation capabilities.

BENEFIT / SAVINGS
- Optimized Training & Simulation with weight for Warfighter
- Better Training capabilities
- Data collections and cross system integration / Net Centric Operations
- Universal “tags” with higher MRL for cost savings and interoperability

Current MILES system does NOT allow Warfighter to “Training Like You Fight”
Other Areas of Development & Collaboration

- **UAVs**
 - Sensors / Antennas / Power

- **Uniform Integration**
 - Sensors / Antennas / Power

- **Fuze Systems**
 - Sensors / Antennas / Initiators / Power / C&C

- **Multi-Tool Systems**
 - Battlefield Manufacturing

- **Munitions Monitoring**
 - Prognostics / Diagnostics / Tracking / RFID /

- **Small Arms Electronics & Sensors**

- **Electronics for High-G**

- **Sensor Development**

DISTRIBUTION STATEMENT A. Distribution Unlimited.
Warfighter Benefits

- Provide the Army with state-of-the-art technologies
- Weight / Volume savings
- Cost effective prototyping & fabrication techniques
- Increased force effectiveness and reduce operations, support, maintenance, and liability costs
- Transition from scheduled to condition based maintenance
- Increase Army readiness by reducing equipment downtime
- Increase safety by providing ammunition assurance
- Reduce reliance on proprietary systems
- Systems Resilient Engineering (IP Protection, Data Rights, Database Access)
- Cost effective prototyping & fabrication techniques
- Paradigm Shift in Energetics Development, Production & Testing
- Improved Testing Capabilities
- Improved Training & Planning Operations
- Optimized R&D / Systems Engineering
Through the advancement of additive manufacturing, superior capabilities can be added to current and future military systems.

US Army ARDEC has numerous Prototyping & Fabrication Techniques.

Through its R&D efforts, ARDEC is helping to advance the capabilities of the Army by integrating state-of-the-art technology into and on military systems.

These technologies will result in new and modernized weapons systems fielded globally that are capable of meeting current and potential challenges.

Army transformation will result in new and modernized weapons systems fielded globally.

Utilizing the manufacturing tools and philosophies of the electronics industry, long known for its innovative low cost and responsiveness manufacturing, to military systems, decreasing cost, improving reliability and shortening time form concept to fielding.
Questions?

Mr. James L. Zunino
Energetics, Warheads & Manufacturing Technology Directorate
Materials Engineer / PEEMS Chair
U.S. Army ARDEC
james.l.zunino.civ@mail.mil