

3D Printed Composites for High Performance Applications

BRIEF HISTORY

- BOSTON BASED
 - NORTHEASTERN UNIVERSITY SPIN-OUT '16
- MASSCHALLENGE 2016 GOLD WINNER
- \$3M SEED ROUND '17
- FORMNEXT 2019 3D PRINTING STARTUP AWARD '18
- CAMX 2019 ACE Award (Equipment & Tooling Innovation)
- \$10M SERIES A LED BY ACCEL PARTNERS (2019)
 - Backed: Facebook, Slack, Dropbox, DJI, Fictiv

ADDITIVE

PROS:

- COMPLEX GEOMETRIES WITHOUT TOOLING
- LESS WASTE
- ALLOWS POINT OF MANUFACTURING

CONS:

MATERIAL PERFORMANCE LIMITATIONS

COMPOSITES

PROS:

- STRONG
- STIFF
- TEMPERATURE RESISTANT

CONS:

- EXPENSIVE
- LABOR INTENSIVE
- LONG LEAD TIMES

COMPOSITES

FORTIFY

ADDITIVE MANUFACTURING 10.00

5

MANUFACTURING 4.0

Fortify is bringing to market the industry's first scalable manufacturing platform for high-performance composites

PRODUCT PLATFORM:

FORTIFY DIGITAL COMPOSITE MANUFACTURING

INFORM™ Generative Microstructure Design Software

Proven DLP Technology + Fortify Resin Delivery and Magnetics

Advanced Materials Program with Industry Partners

FLUXPRINT PROCESS

Output of DCM Process

Reinforcing fibers aligned optimally to enhance performance throughout the part.

Modulate Material properties such as:

- Strength
- Stiffness
- HDT (Heat Deflection Temperature)
- Wear Resistance
- Creep Resistance
- Fracture Toughness
- Thermal Conductivity
- **RF Absorption**

MATERIAL LANDSCAPE

Fortify enables geometries that were not possible with traditional composites – with competitive performance.

Materials Selection in Mechanical Design, 4th Edition, © 2010 Michael Ashby

FORTIFYApplications

Case Study: Injection Mold Tooling

+ High Strength & Stiffness @ Temp
+ Holds Tolerances
+ Accurate parts

PROBLEM: Tool costs are high and take many weeks.-Traditional manufacturing = limited designs / slow-Current 3D printing materials are too weak

SOLUTION: DCM can directly manufacture tooling inserts that would otherwise need to be machined

BENEFIT: Ability to consolidate parts; agile manufacturing for medium-volume production

OPPORTUNITY:

 Quick-turn tooling market valued at rough 6B domestically

Case Study: Electrical Connectors

- + Creep Resistance
- + High Dielectric

PROBLEM: Many SKUs at < 50,000 components/year
-Traditional manufacturing = limited designs / slow
-Current 3D printing materials are too weak
-Many filled materials used today (Molded or CNC)

SOLUTION: DCM can directly manufacture components that are traditionally machined faster and more affordably than traditional manufacturing

BENEFIT: Ability to consolidate parts; agile manufacturing for medium-volume production

OPPORTUNITY:

• 50-80 SKUs at < 80,000 components/year

Case Study: UAV Components

PROBLEM: Traditional manufacturing:

- \$30,000 in tooling + \$100/blade
- Tool Lead Time: 6 weeks

SOLUTION: Fortify can print at 10 blades/hour at \$90/blade

BENEFIT:

Reduce time-to-market

Agile and efficient manufacturing

OPPORTUNITY: Commercial Drone Market valued at \$2B

GO-TO-MARKET

BETA PROGRAM

- Fortify to launch the Beta Program H1 2020 to select partners
- Purpose of Beta will be to develop classes of applications that are novel and utilize our unique manufacturing platform
- Projected printer specifications:
 - Build Envelope: 4.6" x 8" x 12"
 - Build Speed: 1-2 cm/hr (Z axis dependent; X, Y independent)
 - Resins: Digital Tooling; Engineering Resin

THANK YOU

www.3dfortify.com

